Minimal Surfaces and Harmonic Functions in the Heisenberg Group

نویسندگان

  • ROBERTO MONTI
  • R. MONTI
چکیده

We study the blow-up of H-perimeter minimizing sets in the Heisenberg group H, n ≥ 2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gauss Map of Minimal Surfaces in the Heisenberg Group

We study the Gauss map of minimal surfaces in the Heisenberg group Nil3 endowed with a left-invariant Riemannian metric. We prove that the Gauss map of a nowhere vertical minimal surface is harmonic into the hyperbolic plane H. Conversely, any nowhere antiholomorphic harmonic map into H is the Gauss map of a nowhere vertical minimal surface. Finally, we study the image of the Gauss map of compl...

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

C 1 , α - regularity for p - harmonic functions in the Heisenberg group for p near 2 András Domokos and Juan

We prove C1,α regularity for p-harmonic functions in the Heisenberg group for p in a neighborhood of 2.

متن کامل

α - regularity for p - harmonic functions in the Heisenberg group for p near 2

We prove C1,α regularity for p-harmonic functions in the Heisenberg group for p in a neighborhood of 2.

متن کامل

The Heisenberg–langevin Model of a Quantum Damped Harmonic Oscillator with Time-dependent Frequency and Damping Coefficients

We develop a consistent model of a quantum damped harmonic oscillator with arbitrary time-dependent frequency and damping coefficients within the framework of the Heisenberg–Langevin equations with two noncommuting delta-correlated noise operators justifying the choice of the “minimal noise” set of damping coefficients and correlation functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015